
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 9, 213-233 (1989)

CONJUGATE GRADIENT METHODS AND ILU

SYSTEMS WITH ARBITRARY SPARSITY PATTERNS
PRECONDITIONING OF NON-SY MMETRIC MATRIX

HANS PETTER LANGTANGEN
Department of Mathematics, University of Oslo, PO Box 1053. Blindern, N-0316 Oslo 3, Norway

SUMMARY
Preconditioning techniques based on incomplete Gaussian elimination for large, sparse, non-symmetric
matrix systems are described. A certain level of fill-in may be specified in the incomplete factorizations. All
methods considered may be applied to matrices with arbitrary sparsity patterns, for instance those associated
with the general preprocessor algorithms or adaptive mesh techniques. The preconditioners have been
combined with five conjugate gradient-like methods and tested on finite element discretized scalar
convection-diffusion equations in 2D and 3D. It is found from numerical experiments that an amount of fill-
in corresponding to about 50% of the number of original non-zero matrix entries is the optimal choice for
this class of preconditioners. The preconditioners show almost no sensitivity to grid distortion. In problems
with significantly variable coefficients or anisotropy the preconditioners stabilize the basic iterative schemes
in addition to reducing the computational work substantially, mostly by more than 90%. The modified
preconditioning technique, where fill-in is added on the main diagonal, performs in general better than the
standard incomplete LU factorization, but is inferior to the latter in 3D problems and for matrix systems with
complicated sparsity patterns.

K E Y WORDS Preconditioning Conjugate gradients Non-symmetric matrices Finite elements Convective transport

1. INTRODUCTION

When a large, sparse, linear system of equations Ax = b, A E R"." and b, x E R", is solved by iterative
methods, the convergence rate can mostly be greatly improved by applying the iterative method to
an equivalent preconditioned system

M - 'AX = M - ' b.
The non-singular preconditioning matrix M should be a good approximation to A and easy to
compute, and equation systems of the form Mc = d should be effectively solved in O(n) operations.
In addition, M should have low storage requirements. A popular choice for M is M = LU, where
LU is an incomplete LU(1LU) factorization of A; see, e.g. Reference 1.

In this paper the attention is focused on ILU preconditioning of non-symmetric equation
systems which arises from finite element discretization of non-self-adjoint differential operators.
Such operators occur frequently in hydrodynamical applications. If the physical problem involves
complicated geometries, a preprocessor is usually required to partition the domain into finite.
elements. General preprocessor techniques often produce an irregular node numbering which
leads to a stiffness matrix with a complicated sparsity pattern. Similar sparsity patterns are also
produced by adaptive mesh techniques. We will therefore be concerned with incomplete LU

(1)

0271-2091/89/020213-21$10.50
0 1989 by John Wiley & Sons, Ltd.

Received 22 April 1988
Revised 15 August 1988

214 H. P. LANGTANGEN

factorization preconditioners that handle matrices with arbitrary sparsity patterns. Thus no
restrictions are made by the method in this paper with respect to the matrix structure, the nodal
numbering or the number of unknowns per node. However, A must be sparse in order to gain
efficiency. The requirement of generality forces us to consider only pointwise preconditioners, in
contrast to the probably more efficient block preconditioners.'.

A preconditioner is usually combined with an acceleration method. Five conjugate gradient-
like methods are applied as accelerators in this paper: ~r thomin(k)~ (OM(k)), truncated
orthominres(k)' (T-OMR(k)), biconjugate gradients6 (BiCG), conjugate gradients for the normal
equations' (CG-ATA) and conjugate gradients squared* (CGS). In these iterative methods the
coefficient matrix is used only in matrix-vector products. BiCG and CG-ATA also involve a
product of AT and an n-vector in each iteration, which gives rise to equation systems of the form
MTc = d in the preconditioned version. Conjugate gradient-like methods are simple to implement
and have low storage requirements.

ILU preconditioning of general non-symmetric linear systems has previously been treated in,
for example, References4 and 9. Most of the previous work on incomplete factorization
preconditioners has been restricted to matrices with special regular sparsity patterns, for example
those arising from natural, red-black, D2- or DCdiagonal orderings" on rectangular or box-
shaped domains. The major part of the contributions is also devoted to finite difference methods
and symmetric positive definite matrix systems.2* '* l 1 -' Practical hydrodynamical problems
often involve convection operators, complicated geometries, adaptive meshes and implicit time
integration. As a result, large, sparse, non-symmetric matrix systems with arbitrary sparsity
patterns must be solved, and a large amount of the total computational work is spent on this
solution procedure. The need for fast iterative methods with low storage requirements is therefore
substantial.

This work focuses attention on the dependence of incomplete LU factorization preconditioners
on the sparsity pattern of A (i.e. the nodal numbering), the sparsity pattern of M (i.e. the amount of
allowable fill-in), the element distortion and the nature of the test problem. All test problems are
special cases of the stationary convection-diffusion equation that models the convective and
diffusive transport of a scalar quantity (temperature, pollution, etc.) in a flow field. The
convection-diffusion equation is also often used as a simple model equation for testing numerical
techniques, such as equation solvers, which are intended to be applied to more complicated
systems of non-linear hydrodynamical conservation laws.

Section 2 treats incomplete LU factorization when the sparsity of M is known, and choices of
the sparsity pattern of M are presented. Some specific examples of sparsity patterns are shown in
Section 3. Results from numerical experiments are presented in Section 4.

2. ILU PRECONDITIONING

The preconditioning matrix M is chosen to be an incomplete LU decomposition of A. Let P be a
set of pairs of indices (i , j), 1 < i, j < n, representing the desired sparsity pattern (non-zeros) of M. An
incomplete LU factorization may then be obtained by performing naive Gaussian elimination on
A,rejectingall fill-inentries(k, I)if(k, I)$P. Acommonchoicesis P={(i,j)l,4i,j+O} (byAi,jfOwe
mean the entries in A which are not trivially equal to zero on the basis of the discretization method
and the nodal numbering).This choice leads to an ILU preconditioner where all fill-in entries are
rejected. Gustafsson' has proposed a modification to this preconditioning where the fill-in entries
are added to the main diagonal. This version of the ILU preconditioner is called modified ILU
(MILU) preconditioning.

CONJUGATE GRADIENT AND ILU PRECONDITIONING 215

Meijerink and van der Vorst l 2 have shown existence and uniqueness of ILU factorization when
A is an M-matrix. The MILU factorization is stable if A is diagonally dominant.” Stability of the
ILU factorization for non-symmetric systems has been discussed by Elman. These theoretical
results are based on model problems such as Poisson’s equation or the convectiondiffusion
equation, mostly with constant coefficients.

If we let P contain all pairs of indices within the band or skyline of A, the LU factorization
becomes exact. The approximation M to A is improved by increasing the number of pair of indices
in P. On the other hand, the cost of calculating M and solving systems with M as coefficient matrix
is increasing with increasing number of elements in P. The storage required by M is also
proportional to the number of elements in the set P.

By allowing a certain amount of fill-in in M, it is possible to improve the incomplete LU
factorization. This will of course increase both the storage requirements and the computational
labour in each iteration of the iterative equation solver. Nevertheless, it is possible to reduce the
number of iterations so that the total computational work is lowered.

Two different improvements have been popular in the literature. The first approach consists in
determining the set P on the basis of the couplings between the unknowns (i.e. on the basis of the
element topology). In References 13 and 14 this method is applied with success (they considered
mainly the five-star finite difference approximation to the Laplacian on a regularly numbered
grid). The second approach determines the elements in P during the elimination. P will then
contain the index pair (k, i) if the corresponding fill-in entry has magnitude larger than a given
threshold. This technique is described in Reference 17 (symmetric problems) and in Reference 4
(non-symmetric problems). It is expected that this second approach will yield a better incomplete
LU factorization than the first, although no comparison between the two methods seems to have
appeared in the literature. However, in the second approach each fill-in entry must be calculated
before the rejection criterion can be employed. This fact makes the elimination procedure more
cost-expensive than in the first approach. Also, rejecting the fill-in entries on the basis of their
magnitudes means that P may change significantly from problem to problem (or from time step to
time step) even when the spatial discretization remains the same. The memory available may then
suddenly be too small, causing unexpected program abortion. Because of this practical dis-
advantage, we will base the improved ILU factorization on the element or cell topology only. We
must mention, however, that Axelsson and Munksgaard18 have devised an approach which
adjusts the rejection threshold according to the currently available computer memory.

The work of Gus ta f~son’~ on constructing improvements to the common choice of the sparsity
of M, P = { (i , j) l , 4 i , j # O } , will here be extended to matrices with arbitrary sparsity patterns. We
call the resulting preconditioning ILU(I) factorization (or correspondingly, MILU(1) factorization
if fill-in entries are added on the main diagonal). I is a parameter describing the level of allowed fill-
in. 1=0 corresponds to the standard ILU factorization, that is, P = { (i , j) l A i , j $ O } . ILU(1) is
defined in terms of ILU(i- 1) as follows. Let Pi-.l correspond to the index set at level I- 1, that is,
the set used for computing ILU(I- 1). Set Pi = and form the Rroduct of L and U. The sparsity
of L and U is given by Pl-.l. However, the product LU will in general contain non-zero terms not
represented in P,-l. If entry (i , m) in the product LU is not trivially equal to zero, then the index
pair (I, m) is added to P,. One should note that no multiplications are needed to determine Y, and
that the non-zeros of LU are usually distributed symmetrically: (I , m) E P , o (m , I) E P , .

Algorithms for the methods sketched in this section are given in the Appendix.

3. EXAMPLES OF SPARSITY PATTERNS

To demonstrate how the sparsity pattern Pi grows with the parameter I, a few examples are shown
next. The two-dimensional examples represent discretization of the unit square shown in Figure 1.

216 H. P. LANGTANGEN

Figure 1. Sketch of a two-dimensional domain Cl=R,uR,

The unit square is divided into two super elements, R, and R,. The number of bilinear finite
elements in the x- and y-direction is denoted n, and nt respectively, where i = 1,2 corresponds to
R,, R,. A regular node numbering is obtained by numbering the nodes row by row, starting at
y=o.

Figure 2 shows the sparsity pattern Po for a mesh with 20 x 20 bilinear elements. There are 3 x 3
diagonals with non-zeros. The sparsity pattern P, is similar to those given in References 13 and 14,
that is, four additional diagonals are included. There are 19 diagonals in P2.

Figure 3 shows the sparsity pattern Po for an element partitioning similar to the case in Figure 2
but with an irregular node numbering. One of the main advantages of the finite element method is
its easy handling of complex geometries. Often a general preprocessor technique, which mostly
produces an irregular nodal numbering, is required for the partitioning of complicated domains.
Such a general technique is applied here to a simple geometry for comparison of matrix sparsity
patterns corresponding to regular and irregular node numberings. When the general preprocessor
algorithm is used, the interior nodes in each super element are first numbered regularly (row by
row), then the nodes on the boundaries of the super elements are numbered.

Figures 4 and 5 show the P, and P, sparsity patterns for the irregular node numbering. In the
part of the matrix where the sparsity pattern is regular, the additional elements in PI are situated

Figure 2. Sparsity pattern Po corresponding to a bilinear finite element partitioning of the domain in Figure I ; n,=20,
n:=4 and n:= 16; regular numbering 3721 non-zeros

CONJUGATE GRADIENT AND ILU PRECONDITIONING 217

zeros
Figure 3. Sparsity pattern Po of a mesh similar to that in Figure 2, except that the node numbering is irregular; 372 I non-

Figure 4. Sparsity pattern P , corresponding to the same mesh and node numbering as used in Figure 3: 5241 non-zeros

Figure 5. Sparsity pattern P, corresponding to the same mesh and node numbering as used in Figure 3; 7327 non-zeros

218 H. P. LANGTANGEN

along diagonals as previously outlined. In the remaining parts the elements are to a large extent
clustered around the original elements in Po. The total amount of allowable fill-in, for a given I, is
larger here than for a regular sparsity pattern.

We have also calculated the sparsity of some smaller 3D problems. Figure 6 shows the sparsity
pattern Po for a regularly numbered box. The elements were of the trilinear type. Figure 7 displays
the corresponding P, sparsity pattern. In Figure 8 we have plotted the non-zeros in the coeficient
matrix that arose from an irregular numbering of the 3D grid used in Figure 6. The domain
consisted of two super elements, and the node numbering algorithm was similar to that in the 2D
case. That is, all internal nodes within each super element are numbered regularly (row by row,
plane by plane), and finally the nodes on the surfaces of the super elements are given numbers.
Figure 9 shows the P, sparsity pattern that corresponds to Figure 8. From Figures 7-9 we see that
the number of non-zeros in M increases much more rapidly in 3D than in 2D problems. Moreover,
the irregular node numbering leads to a larger increase than the regular numbering.

In adaptive mesh algorithms it is common to have a coarse, regularly numbered ‘parent’ mesh
with local refinements. The nodes in the refined regions usually have higher numbers than the
nodes in the ‘parent’ mesh. The corresponding sparsity patterns thus become very similar to the

Figure 6. Sparsity pattern Po corresponding to a three-dimensional trilinear finite element mesh with 273 nodes and
regular node numbering; 4921 elements in Po

Figure 7. Sparsity pattern P , corresponding to a three-dimensional finite element mesh with 273 nodes

CONJUGATE GRADIENT AND ILU PRECONDITIONING 219

Figure 8. Sparsity pattern Po corresponding to an irregular numbering of nodes in the mesh used for Figure 6; 4921 non-
zeros

Figure 9. Sparsity pattern P , corresponding to the mesh and node numbering in Figure 8; 13833 non-zeros

sparsity patterns associated with the general preprocessor algorithm outlined here. Precondi-
tioners that handle the arbitrary sparsity patterns exemplified in the figures are therefore of
importance not only in problems with complicated geometries but also in situations where simple
meshes are locally refined to resolve, for example, shock fronts.

It should be observed that trilinear elements with one unknown per node result in 27 diagonals
in A. The matrix-vector product M-'Ac then dominates the cost in each iteration of almost any
conjugate gradient-like method. Thus the overall efficiency is crucially dependent on the
implementation of the matrix-vector product. Use of higher-order elements decreases the sparsity,
and this leads to more work per iteration without reducing the number of iterations. For example,
the 27-node 3D brick element leads to 125 non-zero diagonals in A. Each iteration is then roughly
four times as expensive as an iteration with an A corresponding to the trilinear brick element,
assuming n fixed. Although higher-order elements allow less unknowns, this cannot compensate
for the decreased sparsity. The same argument also favours finite difference methods in 3D where
A has only seven non-zero diagonals.

220 H. P. LANGTANGEN

4. NUMERICAL EXPERIMENTS

4.1, Description of test problems

All test problems considered herein are special cases of the linear, stationary
convection-diffusion equation governing the transport of a scalar quantity in fluid flow.

As start vector for the iterative methods we have employed the null vector with essential
boundary conditions inserted. The computational labour of an equation solver applied to a
specific problem is measured in work units. One work unit is defined as one multiplication
(division) per unknown." Work units are given to three significant digits. An iterative equation
solver was considered to be converged when the initial residual was reduced by a factor of lo-*.
We also stopped the iteration when the number of iterations exceeded a given level.

4.1.1. Problem I : Thermal shear layer, regular node numbering. Let

Test problem 1 reads

u=O on rl,
u = l on r2,

au/an=O on X2\(rl~r2),
where v and a are given constants: 0 < u < 00 and 0 < a < n/2.

Physically, this problem may model the temperature field when two fluids with equal velocities
but different temperatures meet at x =O. Figure 10 gives a sketch of the domain and the boundary
conditions, and Figure 11 displays the solution u for two values of u. The discontinuous Dirichlet
condition at (0, i) leads to a steep front in the solution for large values of u. a represents the angle
between the front and the x-axis.

Because of possible numerical instabilities, equation (2) was discretized with a Petrov-Galerkin
method with weighting functions of the form

(3)

where N i is the trial function for u. Square-shaped, equal-sized bilinear elements with a regular
node numbering were used. The value of k"in our Petrov-Galerkin formulation may be found in
Reference 19. The Petrov-Galerkin formulation increases the convergence rate at high Peclet
numbers even when the standard Bubnov-Galerkin formulation (f = O) leads to physically
acceptable results.

4.1.2. Problem 2: Thermal shear layer, irregular node numbering. This test problem is identical
to problem 1 except that the node numbering is irregular. The irregular node numbering was
produced by a general finite element preprocessor algorithm as described in Section3. The
associated sparsity patterns are displayed in Figures 2-5.

CONJUGATE GRADIENT AND ILU PRECONDITIONING 22 1

11 = I

/
v’= (v cos a, sina)

u = o I-
& -
an - 0

Figure 10. Sketch of the domain and boundary conditions in test problem 1

Figure 1 1 . Solution u(x, y) in test problem 1; a=x/4. Left: u=O1; Right: u= loo0

4.1.3 Problem 3: 3 0 thermal transport in porous media. Let R be a two-layered porous cube:

R = [O, 13 x [O, 13 x [O, 13,

Four injection wells are situated at the bottom of the cube, while one production well is placed at
the top. The stationary temperature field in R is governed by

u-+u-+w-=- aT aT aT a (K .aa:) - +- a”y(K .”ay’) - +- :z(K .a,T>, -
ax ay aZ ax (4)

222 H. P. LANGTANGEN

where K ~ , K~ and K, are the thermal diffusivities in the x-, y- and z-direction respectively. In layer 1,
0 < z <$, the diffusivities are denoted as rcL1), K$‘) and K;”. The diffusivities in layer 2, $ < z < 1 , are
similarly denoted as K L ~) , ~ 1 ~) and K!”.

At aR the no-flux condition is imposed, and at the five wells we set

T(O,0,O)=T(1,O,O)=T(O,1,O)=T(1,1,0)=0, T (l , l , l) = l .

The fluid velocity (u, u, w)’ is given in terms of the pressure field p by

where k,, k, and k, are the permeabilities in the x-, y- and z-direction respectively. The
permeabilities used in our numerical experiments were k,= k,= lo4 and k, = lo5 in layer 1 and
k , = k, = lo2 and k, = 1 in layer 2. It is assumed that the effects of gravity and thermal convection
are negligible in comparison with the pressure gradient. The pressure fulfils

in R if the fluid is incompressible. The boundary conditions for p are in this example equal to those
for (- T).

The equations for T and p were discretized by a finite element method employing equal-sized
trilinear elements. A Petrov-Galerkin formulation of type used for test problem 1 was applied for
the temperature equation. Because of limited computer resources, we tested the 3D problem with
only one mesh. The mesh consisted of 10 x 10 x 12= 1200 elements and 1573 nodes. An ILU(0)
preconditioned standard conjugate gradient method was used for solving the symmetric, positive
definite matrix system arising from a Bubnov-Galerkin formulation of equation (5). This iterative
method required 23 iterations, corresponding to 1330 work units.

The temperature equation is of hyperbolic nature in the well regions. Nevertheless, the mean
Peclet number in R is moderate. Figure 12 shows equidistant contour lines of the temperature field
on the surface of the reservoir. The diffusivities in Figure 12 correspond to K:’) = 1 , ki’)= ic;’) = 2,
K (’) = 2 K (2) = K (2) - (21 = 20 z 9 x y - K ,

Figure 12. Test problem 3: equidistant contour lines of the temperature field on the facing surface of the two-layered,
anisotropic porous reservoir with fluid flow

CONJUGATE GRADIENT AND ILU PRECONDITIONING 223

4 . I .4. Problem 4: 20 version of test problem 3. A 2D version of test problem 3 is constructed in
order to test differences between the preconditioners in 2D and 3D. Consider the fluid flow and
temperature distribution in the plane y = 1 in test problem 3. We set

a
aY
-=o i = 1,2

and apply the same boundary conditions and the same values of permeabilities and diffusivities as
in test problem 3. The mesh was identical to that for y = 1 in problem 3, i.e. 10 x 12 bilinear
elements with 143 nodes.

4.1.5. Problem 5: Temperature distribution in ajiowjield around a body. Consider a cold body
moving with constant velocity in a hot, incompressible, viscous fluid. We introduce a co-ordinate
system where the body is at rest so that stationary conditions can be assumed. For simplicity, only
two-dimensional variations are taken into account. The temperature field T is governed by the
convection-diffusion equation

ax

The diffusivity K is regarded as constant, whereas the velocity field (u and v) must be found by
solving the Navier-Stokes equations and the equation of continuity in R. We assume that the
internal heat source due to dissipation can be neglected in the equation governing the temperature
distribution.

Equation (6) was discretized by a Petrov-Galerkin finite element method, as in test problem 1,
using isoparametric bilinear elements. The incompressible viscous flow field was solved by a
Navier-Stokes code employing an implicit penalty function method with selective reduced
integration on bilinear elements.

The boundary conditions for Tare

T = l on rl,
T=O on Tz

aT/an=o on asq(r,ur,).
Figure 13 shows a bilinear finite element mesh with 1011 nodes and an indication of the
boundaries TI and T2. In contrast to the grids in problems 1 4 , this mesh is slightly distorted and
unequally spaced. The velocity field used in the numerical experiments herein corresponds to
Re = 6 and is displayed in Figure 14 (Re is the flow Reynolds number based on the diameter of the

Figure 13. Test problem 5: bilinear finite element mesh around the body; 1011 nodes

224 H. P. LANGTANGEN

Figure 14. Test problem 5: velocity field; Re:: 6

body). The most pronounced features are the high velocity gradients upstream and the vortex
downstream of the body. The equation for Twill thus have dominating hyperbolic terms upstream
of the body, while the local nature of (6) in the recirculating region will be elliptic. Figure 15
displays contour lines of the temperature field for K = 0.2 and (u, u) as in Figure 14. There is a sharp
frorlt close to the stagnation point of the body. The temperature field is smooth in the vortex
region.

4.2. The eflect of ILUIMILU preconditioning

In this subsection we consider T-OMR(5) with ILU(O), MILU(0) and no preconditioning in
order to demonstrate the effect of incomplete LU factorization preconditioners. The four other
equation solvers have also been tested and the results were in qualitative accordance with those of
T-OM R(5).

Figure 15. Test problem 5: the temperature field visualized by equidistant contour lines; ~ = @ 2

225 CONJUGATE GRADIENT AND ILU PRECONDITIONING

Test problem 1 has been run for different values of u, a and n, where n is the number of nodes
(unknowns). At small u values (u< 10) the convergence of the preconditioned versions was
considerably slower than the convergence rate at larger u values (u 2 100). Table I shows the
number of iterations and work units required by T-OMR(5) without preconditioning and with
ILU(0) and MILU(0) preconditioning for different values of n and u. The convergence rate and
also the total amount of computational work were greatly improved by the incomplete LU
factorization preconditioners, especially for u 2 100. In this test problem MILU preconditioning
performed more efficiently than the standard ILU preconditioner.

The convergence of conjugate gradient-like methods depends on the eigenvalue spectrum of
M-lA, which should be as clustered as possible. We have computed the complex eigenvalue
distribution for a = 4 4 and different values of u. The ILU(0) and ILU(1) preconditioners cluster
the spectrum considerably, especially when u >, 100. The spectrum associated with MILU(I) was
almost identical to the ILU(I) spectrum. The clustering effect explains to some extent why
incomplete LU factorization preconditioners reduce the number of iterations. However, no
information from the eigenvalue spectrum seemed to be relevant for explaining the superior
behaviour of MILU compared with ILU.

In test problems 3-5 the effect of preconditioning was even greater than in test problem 1.
Table I1 displays the behaviour of T-OMR(5) in test problems 3 and 4. The number of work units
in problems 3 and 4 differs considerably, but this is because n in problem 3 is more than ten times
larger than n in problem 4. Fast convergence was obtained for ic -4 1, otherwise the convergence
rate for the preconditioned methods was not very sensitive to variations in the diffusivities. As the
anisotropy increased, the non-preconditioned equation solvers converged considerably slower.

Table 1. Performance of T-OMR(5) with and without preconditioning in test problem 1 for different values
of n and u. The results show the number of work units with the number of iterations in parentheses

Preconditioner V n=441 n = 1369 n=4761 n=9409

None 0.1 1 180 (26) 2640 (58) 3020 (66) 4890 (106)
ILU(0) 0.1 463 (7) 972 (15) 1490 (23) 1960 (31)
MILU(0) 0.1 401 (6) 658 (10) 1170 (18) 1170 (18)
None 100 955 (21) 1460 (32) 2470 (54) 3330 (72)
ILU(0) 100 153 (2) 281 (4) 537 (8) 654 (10)
MILU(0) 100 153 (2) 218 (3) 410 (6) 468 (7)

Table 11. Performance of T-OMR(5) with and without preconditioning in test
problems 3 and 4. The results show the number of work units wjth the number of
iterations in parentheses. tc-set 1 corresponds to K:’)= K?)= K:’= K:?= d2)= tc:”

=2. K-set 2 involves anisotropy: tc11)= 1, tcy)=tck1)=2, K : ~) = t c ~) = 4 = 2 0

Test problem 3 Test problem 4
Preconditioner K-set 3D, n= 1573 2D, n= 143

None
ILU(0)
MI LU(0)
None
ILU(0)
MILU(0)

1 5590 (76) 1080 (24)
1 1 1 0 0 (8) 392 (6)
1 2410 (19) 453 (7)
2 21900 (299) 3970 (89)
2 1580 (12) 332 (5)
2 6200 (51) 392 (6)

226 H. P. LANGTANGEN

From Table11 it is also evident that MILU(0) is considerably inferior to ILU(0) in 3D. The
behaviour of ILU(0) and MILU(0) is quite similar in the 2D version of test problem 3. MILU(0)
was in fact better than ILU(0) when combined with BiCG or CGS. The results from test
problem 5, which are given in Table 111, showed little dependence on the diffusivity. We notice that
without preconditioning all equation solvers converged very slowly in these three test problems.

It may be mentioned that other preconditioners such as the SOR and SSOR schemes have also
been tested for comparison. These preconditioners were seldom competitive with and clearly less
reliable than the ILU/MILU preconditioners.

4.3. Effect of irregularly numbered grids and distorted elements

In this subsection we will compare the performance of the incomplete LU factorization
preconditioners when the elements are distorted and when the node numbering is irregular with a
corresponding complex sparsity pattern of A and M. We consider the same test problem as in the
previous subsection, except that u = 10 and only n = 1369 is considered. By grid 1 we will mean the
mesh used in the previous subsection (regular numbering and uniform element partitioning). An
irregular node numbering (test problem 2) is applied for grid 2, and grid 3 refers to a mesh with
distorted elements and regular node numbering. The maximum angle at the corners of the most
distorted bilinear elements was 120", and the length of the sides of two adjacent elements differed
at most by a factor of 20. Grid 3 is displayed in Figure 16. The high distortion should not be

Table 111. Performance of T-OMR(5) with and
without preconditioning in test problem 5. The
results show the number of work units with the
number of iterations in parentheses. ~ = @ 2 and

n=1011

Preconditioner Test problem 5

None
ILU(0)
M I LU(0)

5700 (126)
528 (8)
404 (6)

Figure 16. Distorted bilinear finite element mesh corresponding to grid 3

227 CONJUGATE GRADIENT AND ILU PRECONDITIONING

accepted in a practical problem, but may serve as a test case. Tables IV and V compare the
performance of T-OMR(5) and BiCG for these three grids.

The distorted mesh (grid 3) had a significantly negative influence on the convergence rate when
no preconditioning was used. Almost no negative influence of the distorted grid was observed
when the equation solver was preconditioned.

The irregularly numbered mesh (grid 2) had no influence on the non-preconditioned iterative
methods. The ILU(0) preconditioner required slightly more work for grid 2 than for grids 1 and 3,
while MILU(0) performed poorly. Several other values of u and a were also run for gird 2, and all
results indicate that the modified incomplete LU factorization preconditioner is not suited for
sparsity patterns associated with the irregular node numbering where the amount of fill-in is larger
than for the regularly numbered grid.

We have also briefly studied test examples where n is kept fixed and the bandwidth is varied. For
small bandwidths MILU preconditioning was clearly more effective than ILU. As the bandwidth
was increased, the superior performance of MILU relative to ILU decreased, and ILU was better
than MILU for large bandwidths. In this context it must be mentioned that ILU also became
slightly less effective as the bandwidth was increased. Our experience indicates that the efficiency
of MILU versus ILU depends on the ratio between the number of fill-in entries and n. This
assertion is in accordance with the observed inefficiency of MILU in 3 D problems. However, other
factors also influence the behaviour of MILU, and no rigorous conclusions can presently be
drawn for predicting when MILU should be applied in preference to ILU.

4.4. Test of lLU(l) /MlLU(l) preconditioning

The ILU(1) and MILU(1) preconditioners usually reduce the number of iterations as 1 increases.
However, the computational work associated with the factorization of M and the inversion of M
increases very rapidly with 1. It is therefore of interest to find an optimal value of 1.

Three parameter sets in problem 1 with n= 1369 and w=0~1,10,100 were tested for l = O , 1,2,3,
4. The average results are shown in Table VI for ILU(I) and in Table VII for MILU(I). The
optimal choice seemed to be 1 = 2 for ILU and 1 = 1 for MILU. CG-ATA had the best performance

Table IV. Performance of T-OMR(5) applied to three different grids

Grid 1 Grid 2 Grid 3
Preconditioner (‘regular’) (‘irregular’) (‘distorted‘)
~~~~ 

None 
ILU(0) 
MILU(0) 

1600 (35) 1600 (35) 2420 (5 3) 
595 (9) 658 (10) 595 (9) 
469 (7) divergence 407 (6) 

Table V. Performance of BiCG applied to three different grids 

Grid 1 Grid 2 Grid 3 
Preconditioner (‘regular’) (‘irregular’) (‘distorted‘) 

None 
ILU(0) 
MILU(0) 

1620 (66) 1620 (66) 2350 (96) 
824 (19) 907 (21) 865 (20) 
532 (1 2) 1700 (40) 490 (11) 



228 H. P. LANGTANGEN 

Table V1. Average results in work units based on three parameter sets in test 
problem 1; ILU(f) preconditioning 

~~~ ~ 

Method l = O I= 1 1=2 1=3 1=4

678 507 433 472 658
T-OMR(5) 616 453 444 472 693
O W)

BiCG 699 600 594 640 804
CGS 476 384 373 46 1 638
CG-A'A 1810 1110 837 762 939

Table VII. Average results in work units based on three parameter sets in test
problem 1; MILU(1) preconditioning

Method 1=0 l= 1 1=2 1 = 3 1=4
~~~~ ~ 

516 438 402 453 652 
T-OMR(5) 448 382 389 472 636 
OM(5) 

BiCG 518 50 1 514 640 770 
CGS 365 335 353 512 638 
C G - A ~ A  1190 870 760 787 939 

for I =  3 (ILU) and I = 2 (MILU). BiCG was less sensitive to variations in I than the other equation 
solvers. 

A serious drawback with the ILU(r) and MILU(I) preconditioners is the large storage 
requirements. Let n r ( l )  be the number ofelements in the sparsity pattern of M. In this test we have 
n r ( O ) =  1 1  881, n r ( l ) =  16921, nr(2)=24 127, nr (3 )=35319  and nr(4)=51 147. In general the 
relation nr(I)x nr(0) x 1.44' holds for regularly numbered grids consisting of bilinear elements. 
Notice that the choice ILU(2) requires more than twice as many memory locations as ILU(0). 

If the nodes are reordered so that fill-in is minimized, one should expect that the incomplete LU 
factorization is improved. Simon' tested several such node numbering algorithms with the ILU(0) 
preconditioner and found only slightly increased efficiency of orthomin. From the figures in 
Section 5 it is seen that the irregular node numbering produced by a general preprocessor 
technique results in a more rapid growth of n,M(I) with I than does the regular node numbering. 
This indicates that the number of fill-in entries which are rejected in the ILU(0) preconditioner is 
larger for an irregular node numbering than for a regular one. We may thus expect that an 
irregular node numbering decreases the efficiency of an incomplete LU factorization precondi- 
tioner. The same test as shown in Table VI has been performed with an irregularly numbered grid, 
and the average results are reported in Table VIII. Since MILU(0) preconditioning performed less 
well than ILU(0) on the irregularly numbered grid in test problem 2, no results for MILU(I) are 
presented. A comparison of Tables VI and VIII shows that the irregular node numbering leads to 
an ILU(0) preconditioner which is inferior to the ILU(0) preconditioner associated with a 
regularly numbered grid. Nevertheless, the differences are surprisingly small, and we may 
conclude that there is no essential loss in efficiency when employing an irregular node numbering. 
A further step in the argument may lead us to expect that a numbering which is optimal with 
respect to the amount of fill-in probably gives only minor gain with respect to the efficiency of an 
ILU preconditioner. 



CONJUGATE GRADIENT AND ILU PRECONDITIONING 229 

Table VIII. Average results in work units based on three parameter sets in test 
problem 2; ILU(1) preconditioning 

Method I =O I= 1 1=2 1=3 1=4 

OM(5) 715 579 563 71 1 1130 
T-OMR( 5) 574 518 523 704 1170 
BiCG 782 693 732 744 1460 
CGS 462 437 492 680 1130 
C G - A ~ A  2380 1840 1800 2210 3010 

In the test problem associated with Table VIII we had n,M(O)= 1 1  881, n,M(l)= 18055, 
nF(2)=27683 and n:(3)=43439. n y ( 1 )  grows faster with 1 in this case than for the regularly 
numbered grid: ny( r )zn ,M(O)  x 1.6'. 

From Tables VI and VIII we also see that the preconditioned CG-ATA was far more sensitive to 
the node numbering than the other equation solvers. Our conclusion is that the node numbering 
has a minor influence on the behaviour of the tested ILU(1) preconditioned equation solvers, with 
the exception of CG-ATA. 

In test problem 3 the MILU preconditioner could not compete with the standard ILU 
preconditioner. Convergence results for ILU(I) with I=O, 1, 2 are displayed in Table IX. We see 
that, except for CG-ATA, there is no gain in using 1 > O .  n y ( l )  grows much faster with 1 in 3D than in 
2D. In this test problem we had n:(0)=35 557, n,M(1)=74797 and n?(2)= 156893. In general, 
n;(r )=nF(O) x 2.1' for regularly numbered grids consisting of trilinear bricks. Most of the 
computational work per iteration in 3D problems is spent on the matrix-vector product M- Az. 
The cost of the matrix-veqtor product in 3D is 3 x 1.46' times the cost of the product in 2D. This 
explains why I>O is mostly ineffective in 3D problems. 

An irregular node numbering as in test problem 2 has also been applied to the 3D problem. The 
results confirm the conclusions drawn from problem 2. However, as expected, the difference in 
efficiency of ILU(0) associated with the two numberings was larger in 3D than in 2D. For our 
irregularly numbered grid, n r ( r )  = nY(0) x 2.7'. In the 2D version of test problem 3 the optimal I 
was as in test problem 1. 

The ILU(f)/MILU(I) results for test problem 5 (n = 101 1, ~=0.2,5,50)  are reported in Tables X 
and XI. The optimal 1 values are in accordance with the results of the other two-dimensional test 
problems. Since 1 should be kept low because of storage requirements, it is felt that I =  1 is the 
recommended value in this test example. 

Table IX. Results in work units with the number of iterations shown in 
parentheses for test problem 3; ILU(1) preconditioning 

Method l = O  I =  1 1=2 

OM(5) 1530 (21) 1640 (11) 3550 (7) 
T-OMR(5) 1580 (1 2) 1670 (6) 3930 (5) 
BiCG 1910 (18) 2480 (12) 4350 (7) 
CGS 1420 (13) 2010 (9) 4090 (6) 
CG-A~A 4300 (43) 3910 (21) 5760 (12) 



230 H. P. LANGTANGEN 

Table X. Average results in work units based on three pardmeter sets in test 
problem 5; ILU(1) preconditioning 

Method l = O  I =  1 1=2 1 = 3  1=4 

685 53 1 450 412 529 
T-OM R( 5) 61 1 496 429 467 616 
OM(5) 

BiCG 713 642 554 593 614 
CGS 498 462 431 447 554 
CG-A'A 2060 1350 962 803 8 54 

Table XI. Average results in work units based on three parameter sets in test 
problem 5; MILU(I) preconditioning 

~~~ ~ 

Method l=O 1 = 1 1=2 I = 3 1=4

OM(5) 426 394 358 384 529
T-OMR(5) 404 380 375 436 542
BiCG 484 462 416 520 644
CGS 333 315 319 398 524
CG-A~A 1550 1100 810 803 854

5. CONCLUSIONS

Incomplete LU factorization preconditioners for non-symmetric matrices with arbitrary sparsity
patterns have been described and tested on 2D and 3D convection4iffusion problems. The
MILU preconditioners were in general more efficient than the standard ILU preconditioners for
regularly numbered grids in 2D, but the latter methods were superior to the former on irregularly
numbered grids where the sparsity pattern was complex. Also in 3D problems ILU performed
better than MILU. The dependence of the ILU preconditioner on the node numbering (or the
matrix sparsity pattern) was found to be small. The convergence rate of ILU/MILU pre-
conditioned conjugate gradient-like methods showed almost no sensitivity to grids with highly
distorted elements. It was never observed that the ILU preconditioners had any destabilizing
effect on iterative equation solvers. Very fast convergence of preconditioned conjugate gradient-
like methods seems to be attainable in problems of hyperbolic nature in the whole domain.

For the ILU(I)/MILU(l) preconditioners in 2D the most efficient performance from a
computational point of view was obtained with 1 = 1 for MILU and with 1 = 2 for ILU. Since the
differences between different 1 values are relatively small and since the storage requirements of the
preconditioning matrix increase with increasing I , the value 1 = 1 or even 1=0 may be re-
commended in practice. In 3D the decrease in sparsity with 1 led to an increase in the cost of the
matrix-vector products which was too large to be compensated by the reduction in the total
number of iterations. Therefore I = O was the optimal choice in 3D problems.

It is observed that our simplest test problem, which is of the type often used in the literature, is
readily handled by most iterative methods whether they are preconditioned or not. In the more
complicated and physically relevant problems tested herein it seems that preconditioning is
required for conjugate gradient-like methods to be of practical use. In contrast to methods
without preconditioning, the preconditioned methods handle anisotropy with little reduction in
efficiency. Our MILU(0) preconditioner led to a reduction of the total computational work of

CONJUGATE GRADIENT AND ILU PRECONDITIONING 23 1

about 90% in the physically most relevant test problems. When the number of unknowns
increases, the saving will be even greater as the preconditioned methods have more beneficial
asymptotic work estimates than the non-preconditioned methods.
Since five different conjugate gradient-like methods were used in the tests, it is interesting to

report their relative performance. None of the tested schemes diverged for any test problem.
However, the non-preconditioned CG-A'A sometimes converged extremely slowly. The pre-
conditioned CG-ATA required about the same amount of work as the non-preconditioned CGS.
C G S turned out to be the best method, with competition from orthominres (k) and orthornin(&).
The latter two methods were tested with the standard choice k = 5, but lower k values increase
their efficiency considerably. However, small values of k occasionally lead to divergence.

APPENDIX: ALGORITHMS

In this appendix we give detailed algorithms for the decomposition of M and the solution of
equation systems with LU as coefficient matrix.

A common way to store a sparse matrix is store the non-zero entries in a one-dimensional array,
say RA. To locate a special entry, two address arrays IR and IC are needed. IR(k) gives the address
in R A of the first non-zero entry in row number kin A. IC(I) gives the column number (in A) of the
entry RA(I) . I R has dimension n f l , while RA and IC have dimension IR(n+ 1)- 1. In the
algorithms below, M is assumed to be stored in R A (with length equal to the number of elements in
P,) , with IC and IR as address arrays. The function idx(r ,s) gives the entry number in R A
corresponding to the matrix entry M,,% if M,.,#O, otherwise the function value equals zero. The
ILU factorization overwrites the array R A which initially contains the non-zero entries in A and
possibly additional zeros according to the set P. After the elimination L will occupy the lower half
part of A, while U will occupy the upper part. L has unit diagonal entries. The following algorithm
computes the LU factorization of M:

for r = 1 step 1 until n- 1 do
begin

r,: = idx(r, r)
d : = RA(r,)
for q 1 = r r + 1 step 1 until I R (r + 1)- 1 do
begin

i: = I C (q ,)
i,: = idx(i, r)
if RA(i ,)#O then
begin

e: = RA(i ,) /d
R A (i,): = e
ii: = idx(i, i)
for q 2 = r , + 1 step 1 until I R (r + l) - I do
begin

j: = IC(q,)
if R A (q 2) # 0 then
begin

i j : = idx(i , j)
if i,#O then

RA(ij) : = RA(i ,) - e R A (q ,)

232 H. P. LANGTANGEN

else if MILU then
R A (i i) : = R A (i ,) - e R A (q ,)

end
end

end
else R A (i,): = 0

end
end

The Boolean variable MILU is false for standard incomplete LU factorization (ILU) and true for
Gustafsson's l4 modified incomplete LU factorization (MILU).

The solution of LUc=d is calculated by the following algorithm (c is stored in d at return):

for i = 1 step 1 until n do
begin

s = o
i i : = l R (i)
while IC(i i)< i do
begin

s : = s + R A (i ,) . d (l C (i ,))
i i : = i i + 1

end
d(i): = d (i) - s

end
d(n) : =d(n)/RA(idx(n, n))
for i = n - l step-1 until 1 do
begin

s:=o
i i := idx(i , i)+ 1
I d : = l i - 1
while i i , < l R (i + 1)- 1 do
begin

s: = s + R A (i i) . d (l C (i i))
i i : = i i + 1

. .

end
d (i) : = (d (i) - s) / R A (i ,)

Some preconditioned conjugate gradient-like methods require the solution of MTc = d . The next
algorithm overwrites d with M-'d. The algorithm is only valid if the relation (1, m) ~ P o (m , I)EP
holds, but this is fulfilled in most finite element and finite difference methods.

for i = 1 step 1 until n do
begin

end

s:=o
i i : = I R (i)
l d : = l i

while IC(ii) -= i do
begin

. .

j : = K (i ,)
j , : = idxU, i)

CONJUGATE GRADIENT AND ILU PRECONDITIONING 233

s : =s+ R A (j i) - d (I C (i ,))
i i : = i i + 1

end
d (i) : = (d (i) - s) /R A (id)

end
for i = n - 1 step - 1 until 1 do
begin

s:=o
i i : = idx(i , i) + 1
i , , :=ii-l
while i i < l R (i + 1)- 1 do
begin

j : = IC(i,)
j i : = i d x (j , i)
s : = s+ R A (j i) . d (I C (i i))
i i := i i+ 1
end
d(i): = d (i) - s

end

REFERENCES

1. 0. Axelsson and V. A. Barker, Finite Element Solutions of Boundary Value Problems, Academic Press, New York, 1984.
2. 0. Axelsson, ‘A survey of preconditioned iterative methods for linear systems ofalgebraic equations’, BIT, 25,166187

3. P. Concus, G. H. Golub and G. Meurant, ‘Block preconditioning for the conjugate gradient method‘, SIAM J. Sci.

4. J. R. Wallis, ‘Incomplete gaussian elimination as a preconditioning for generalized conjugate gradient acceleration’, in

5. H. P. Langtangen, T. Rusten, A. Tveito and S. 0. Wille, ‘An element by element preconditioner for iterative equation

6. R. Fletcher, ‘Conjugate gradient methods for indefinite systems’, in G. A. Watson (ed.), Dundee Biennal ConJ of

7. M. R. Hestenes and E. Stiefel, ‘Methods of conjugate gradients for solving linear systems’, J. Res. NBS, 49,409436

8. P. Sonneveld, ‘CGS, a fast Lanczos-type solver for nonsymmetric linear systems’, Report 84-16, Department of

9. H. D. Simon, ‘Incomplete LU preconditioners for conjugate-gradient-type iterative methods’. in Society of Petroleum

10. G. A. Behie and P. A. Forsyth, ‘Incomplete factorization methods for fully implicit simulation of enchanced oil

11. D. S. Kershaw, ‘The incomplete Choleskyconjugate gradient method for the iterative solution of systems of linear

12. J. A. Meijerink and H. A. van der Vorst,‘An iterative solution method for linear systems of which the coefficient matrix

13. J. A. Meijerink, ‘Guidelines for the usage of incomplete decomposition in solving sets of linear equations as they occur

14. 1. Gustafsson, ‘A class of first order factorizations’, BlT , 18, 142-156 (1978).
15. 1. Gustafsson, ‘Stability and rate of convergence of modified incomplete Cholesky factorization methods’, Computer

16. H. C. Elrnan, ‘A stability analysis of incomplete LU factorizations’, Math. Comput., 47, 191-217 (1986).
17. M. A. Ajiz and A. Jennings, ‘A robust incomplete Cholesky-conjugate gradient algorithm’, Int. j . numer. methods eng.,

18. 0. Axelsson and N. Munksgaard, ‘Analysis of incomplete factorizations with fixed storage allocation’. in D. J. Evans
(ed.), Preconditioning Methods: Analysis and Applications, 1983.

19. A. Brooks and T. Hughes, ‘Streamline upwind/Petrov-Galerkin formulation for convection-dominated flows with
particular emphasis on the incompressible Navier-Stokes equations’, Cornput: Methods Appl. Mech. Eng., 32, 199-259
(1982).

(1985).

Stat. Comput., 6, 220-252 (1985).

Society of Petroleum Engineers of A l M E , Proc. Seventh Symp. on Reservoir Simulation, San Francisco, 1983.

solvers’, in Proc. VI Int. Con$ on Finite Elements in Water Resources, Lisboa, Portugal, 1986.

Numerical Analysis, Springer, New York, 1975, pp. 73-89.

(1952).

Mathematics and Informatics, Delft University of Technology, 1984.

Engineers of A l M E , Proc. Eighth Symp on Reservoir Simulation, Dallas, 1985.

recovery’, S l A M J. Sci. Stat. Comput., 5, 543-561 (1984).

equations’, J. Comput. Phys., 26, 43-65 (1978).

is a symmetric M-matrix’, Math. Comput., 31, 148-162 (1977).

in practical problems’, J . Cornput. Phys., 44, 134-155 (1981).

Sciences 79.02 R, Chalmers University of Technology, Gsteborg, Sweden, 1979.

20,949-966 (1984).

